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Abstract: An overlapping moving particle semi-implicit (MPS) method is applied for 3-D free surface flows based on our in-house 
particle solver MLParticle-SJTU. In this method, the coarse particles are distributed in the whole domain and the fine particles are 
distributed in the local region of interest at the same time. With the fine particles being generated and removed dynamically, an 
algorithm of generating particles based on the 3-D overlapping volume is developed. Then, a 3-D dam break flow with an obstacle is 
simulated to validate the overlapping MPS. The qualitative comparison among experimental data and the results obtained by the 
VOF and the MPS shows that the shape of the free surface obtained by the overlapping MPS is more accurate than that obtained by 
the UNI-coarse and close to that obtained by the UNI-fine in the overlapping domain. In addition, the water height and the impact 
pressure at P1 are also in an overall agreement with experimental data. Finally, the CPU time required by the overlapping MPS is 
about half of that required by the UNI-fine. 
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Introduction  

The meshfree particle method is a flexible tool to 
deal with largely deformed free surface flows such as 
the dam breaking[1,2], the wave breaking[3,4], the slo- 
shing[5], and the wave-body interaction[6]. However, 
when it is applied for the 3-D free surface flows, the 
number of the corresponding particles with a uniform 
mass increases sharply, which may lead to a huge 
computational cost in terms of CPU time and memory 
requirement. To overcome this problem, some atte- 
mpts were made to develop local refinement techni- 
ques. Feldman and Bonet[7] proposed a particle spli- 
tting technique, which was considered as the major 
step towards Adaptive Particle Refinement (APR) by 
Barcarolo et al.[8]. Based on Feldman’s work[7], 
Vacondio et al.[9,10] studied a coalescing technique. 
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Similar to Feldman’s work[7], Lopez et al.[11] described 
another particle splitting criterion by minimizing the 
error of the gradient of a general function. Most of 
these attempts were implemented based on weakly 
compressible SPH (WCSPH) with the explicit algori- 
thm to produce the pressure field. Unlike the WCSPH, 
a semi-implicit algorithm is often adopted to obtain 
the pressure field in the moving particle semi-implicit 
(MPS), which makes it much more difficult deve- 
loping the local refine technique in the MPS than that 
in the SPH. Recently, Shibata et al.[12] proposed an 
overlapping particle technique (OPT) in the MPS to 
reduce the computational cost. Then, Tang et al.[13] 
applied this overlapping method for 2-D free surface 
flows based on their in-house code MLParticle-SJTU. 
However, the capability of the overlapping MPS for 
3-D free surface flows is not made evident. 

The main purpose of the present work is to apply 
the overlapping particle technique[12] for a 3-D dam 
break flow with an obstacle. This paper is organized 
as follows: firstly, the improved MPS (IMPS) method 
together with the overlapping technique are introdu- 
ced briefly. In particular, we employ a different pre- 
ssure gradient term to be consistent with the conserva- 
tive model in the IMPS. In view of the fact that the 
high-resolution particles are generated or removed 
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dynamically in the overlapping region, an algorithm 
of generating particles in our previous work[13] is 
extended to the 3-D case now. Finally, the validation 
is made against a 3-D dam breaking flow, with the 
computational results compared with the experimental 
data in the literature. 
 
 
1. Governing equations 

In the MPS method, the governing equations are 
the mass and momentum conservation equations. They 
are as follows: 
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where ρ  is the fluid density, V  is the velocity 
vector, p  is the pressure, ν  is the kinematic 
viscosity, g  is the gravitational acceleration vector, 
and t  is the flow time. 
 
 
2. Particle interaction models 
 
2.1 Kernel function 

In the MPS method, the differential operators are 
modeled based on a kernel function. In the present 
work, we adopt the following modified kernel function 
suggested by Zhang and Wan[14], which can be expre- 
ssed as follows: 
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where r  is the distance between particles and er  is 
the supported radius of the particle interaction domain. 
 
2.2 Gradient model 

In the traditional MPS, the gradient operator is 
expressed as a weighted average of the gradient vector 
between particle i  and its neighboring particles j , 
and it can be expressed as 
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where 0n  is the initial particle number density, d  is 
the space dimensions, and r  is the coordinate vector 

of the fluid particle. 
Equation (4) suffers from a drawback that it can- 

not conserve the linear and angular momentums of the 
system. To overcome this problem, we employ a con- 
servative form as follows[15] 
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2.3 Divergence model 

The divergence model for the vector V  can be 
formulated as[15] 
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2.4 Laplacian model 

The Laplacian operator is modeled by a weighted 
average of the distribution of a quantity φ  from parti- 
cle i  to its neighboring particles j , which can be 
expressed as follows: 
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where the parameter λ  is introduced to keep the 
variance increase equal to the analytical solution. 
 
2.5 Model of incompressibility 

In the MPS method, the semi-implicit algorithm 
is adopted and the pressure fields are obtained impli- 
citly through solving the Poisson pressure equation 
(PPE). In the present work, we employ a mixed source 
term method combined with the velocity divergence- 
free condition and constant particle number density 
condition, which is proposed by Tanaka and 
Masunaga[15] and rewritten by Lee et al.[16] as 
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where t∆  is the calculation time step, the superscripts 
k  and +1k  indicate the physical quantity in the thk  
and ( +1)thk  time steps, γ  is the weight of the parti- 
cle number density term in the right hand side of Eq.(9) 
and is assigned a value between 0 and 1. In this paper, 

= 0.01γ  is selected for all numerical experiments. 
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2.6 Detection of free surface particles 
In the MPS method, the Dirichlet boundary con- 

dition is imposed by assigning zero pressure for surfa- 
ce particles. By now, some approaches were deve- 
loped to detect the free surface particles. Tanaka and 
Masunaga[15] judged the surface particle by using the 
number of neighbor particles to overcome the misju- 
dgment in the traditional method. Lee et al.[16] combi- 
ned the above method and the small particle number 
density. Khayyer et al.[17] proposed a new criterion 
based on asymmetry of neighboring particles, in which 
particles are judged as the surface particles according 
to the summation of -x coordinate or -y coordinate of 
the particle distance. In the present study, we employ 
a detection method[14] which is also based on the 
asymmetry arrangement of neighboring particles, but 
on different equations, in order to describe the asym- 
metry more accurately, as follows 
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If the absolute value of the function F  at particle i  
is more than a threshold α , then particle i  is consi- 
dered as a free surface particle, and this can be expre- 
ssed as follows 
 

α>F  (for free surface particles)            (11) 
 
where α  is assigned to 

00.9 F , and 
0F  is the ini- 

tial value of F  for the surface particle. 
 

 
 
 
 
 
 
 
 
 
 
 
Fig.1 Concept of overlapping particle method 
 
 
3. Overlapping particle technique 
 
3.1 Outline 

The OPT is a local refinement technique in the 
frame of the MPS, which was first proposed by 
Shibata et al.[12]. As shown in Fig.1, the large particles 
(also called the coarse particles or the low-resolution 
particles) are distributed in the whole computation 
domain, while the fine particles (also called the high- 

resolution particles or the light particles) are only 
distributed in the local domain of interest (or called 
the overlapping domain). This overlapping region is 
occupied by both the coarse particles and the fine 
particles when the fluid flows in the overlapping do- 
main. However, the interaction between particles of 
different sizes is a one-way process, where only the 
coarse particles can influence the fine particles but not 
other way round. In particular, the entire flow field is 
first solved through the coarse particles, and then the 
local flow is recalculated through the fine particles 
together with the truncated boundary information from 
coarse particles. In view of the fact that no fine parti- 
cles are outside the overlapping region, the imaginary 
cells are distributed in the truncated boundary of the 
overlapping domain to compensate the effect of the 
incomplete support domain for fine particles in these 
cells such as the correction of the PPE and the pressu- 
re gradient model. Furthermore, the imaginary cells 
can also be used to generate and remove particles. If 
we denote the outer layer cells as the inflow/outflow 
cells, each inflow/outflow cell will be checked whether 
it is empty at the beginning of each time step. If a 
target cell is vacant and is surround by coarse particles 
at the same time, a fine particle will be generated in 
the target cell and its position is determined using the 
inflow technique developed by Shibata et al.[6]. After 
the motion of the particles at each time step, each 
particle in these cells is checked whether it is out of 
the range of the overlapping domain. If so, this fine 
particle will be removed. It should be noted that the 
operations of generating and removing particles are 
only valid for fine particles, but not for coarse parti- 
cles. 
 
3.2 Algorithm of generating and removing particles 

Generating and removing fine particles dynami- 
cally plays a key role in the OPT. In the present work, 
an algorithm of generating and removing particles in 
our previous work[13] is employed here since it is 
similar for 2-D and 3-D cases. However, this algori- 
thm is still introduced briefly for the completeness of 
this paper. As mentioned above, the fine particles are 
removed directly if they flow out of the overlapping 
region. Different from the removing particles, genera- 
ting a fine particle is a complex process. It includes 
two main parts, that is, where to place the generated 
particle and how to determine whether the vacant cell 
is surrounded by coarse particles numerically. Since 
the former problem can be solved by the inflow tech- 
nique[6], the key step of the algorithm is to judge 
whether an empty imaginary cell is surrounded by 
coarse particles in the 3-D. We first define a quantity 
χ , which is equal to the ratio of the overlapping volu- 
me coverV  to the cell volume cellV . If χ  is greater 
than a threshold 0χ , it can be concluded that the cell 
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is covered by coarse particles. Here, we assume that 
the particle is a cube in shape. The covered volume is 
also a cube in shape. Hence, the covered volume can 
be expressed as cover = x y zV l l l , where xl , yl , zl  are 
the covered lengths in x , y  and z  directions, re- 
spectively.  

In this study, only the calculation of the covered 
length in x  direction is discussed in what follows 
because the cases in y , z  directions are similar. Let 

cx  be the center of the candidate coarse particle with 
the edge length 2R  and likewise 2r  is the edge 
length of the candidate imaginary cell. lx , rx  are the 
left and right boundaries of the imaginary cell. Define 

maxd , mind , lV , rV  as follows: 
 

( )max = max ,l c r cd x x x x− −                 (12) 
 

( )min = min ,l c r cd x x x x− −                 (13) 
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The covered volume coverV  can be calculated as follo- 
ws: if mind R≥ , then set cover = 0V  and terminate the 
calculation, if 0l rVV ≥ , the whole cell locates on the 
same side of the center of the candidate coarse parti- 
cles, and two possible cases should be considered. If 

maxd R> , = +l R r d− , else = 2l r , if 0l rVV < , the 
whole cell locates on the different side of the center of 
the candidate coarse particles, and there are also two 
possible cases. If maxd R> , min= +l R d , else = 2l r , 
Calculate the covered volume cover = x y zV l l l  and the 

cell volume cellV . 
Then, calculate the ratio cover cell= /V Vχ . If χ >  

0χ , it can be concluded that the candidate cell is 
covered by coarse particles. At the same time, a fine 
particle can be generated in this cell if it is empty. 
 
3.3 Modified PPE and pressure gradient model 

For fine particles in the imaginary cells, their 
supported domain is incomplete. Therefore, the special 
treatments should be made for these particles. Shibata 
et al.[12] gave the corrected PPE and the pressure gra- 
dient model as: 
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where cellp  is the pressure at the center of the cell 
where the target fine particle i  locates. Note that 
Eq.(17) is consistent with the traditional gradient 
model (Eq.(4)) through replacing ip  with cellp . In 
this study, the conservative gradient model is adopted, 
and the corresponding modified pressure gradient 
model is formulated as 
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Fig.2 Geometry of the dam break (m) 
 

 
 
 
 
 
 
 
 
 
 
 
Fig.3 Locations of pressure probes on the box (m) 
 
 
4. Test case 

The dam breaking problem is often used as a 
benchmark for the violent flow evaluation by mesh- 
free particle methods[1,2]. In this section, a 3-D dam 
break flow with an obstacle is numerically simulated. 
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Fig.4 Comparison of snapshots of dam break flow between results of experiment, MPS and VOF, at time 0.56 s 
 
The set-up of dam break is shown in Fig.2. A tank of 
3.22 m( ) 1.00 m( ) 1.00 m( )L B H× ×  with an open roof 
is used, and the overlapping subdomain is shown as 
the Fig.2(b). The right part of the tank is initially filled 
with water of 0.55 m in depth. At = 0 st , the door is 
suddenly opened and the water can flow freely. A 
small obstacle of 0.403 m×0.161 m×0.161 m is placed 
in the tank as shown in Fig.3. The details of the expe- 
riment can be found in Ref.[18]. In the calculation, the 
kinematic viscosity of water is 6 2= 1.01 10 m / sν −× , 
the gravity acceleration is 2= 9.8 m / sg . 
 

Table 1 The computational parameters in the simulations 

Cases Initial particle space/m Description 

UNI-coarse 0.04 Single resolution 

OPT 0.04, 0.02 Overlapping MPS 

UNI-fine 0.02 Single resolution 
 

The computational parameters in all simulations 
are summarized in Table 1, where the prefix UNI re- 
presents that the whole domain is discretized as unifo- 

rm particles and solved only by using the uniform 
MPS method and OPT indicates that high-resolution 
particles are overlapping on the heavy particles in a 
local region and the OPT method is employed. 

Figure 4 qualitatively compares the MPS results 
with the experimental snapshots[18] and the VOF resu- 
lts[18] at the physical time = 0.56 st . The global 
motion of the fluid obtained by the present MPS is 
quite similar with the experimental one and the VOF 
result. Both the MPS and the VOF reproduce the flow 
phenomena in terms of the liquid splashing. In addi- 
tion, the shape of the free surface obtained by the 
UNI-fine seems more accurate than that obtained by 
the UNI-coarse, while the OPT can reproduce the 
same accurate shape of the free surface as that obtai- 
ned by the UNI-fine in the vicinity of the obstacle. It 
is expected that the UNI-fine can give the best result. 
However, the result obtained by the OPT is better than 
that obtained by the UNI-coarse and close to that ob- 
tained by the UNI-fine in the overlapping domain. 
Furthermore, with the increase of the resolution, a 
more accurate shape of the free surface can be obtai- 
ned. 
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The water height evolution calculated by the 
MPS at the location H2 is illustrated in Fig.5 and com- 
pared with the experiment result[18]. The general 
agreements between the MPS and the experiment are 
seen. The large peak can be observed at = 1.8 st  due 
to the returned water from the left side wall. This peak 
is not obvious in the results obtained by the MPS due 
to the low-resolution simulations, and this can be 
improved by increasing the resolution[19]. In addition, 
the flow in this moment is quite violent, involving 
overturned free surfaces and splashing water, and a 
perfect agreement is almost impossible. 
 

 
 
 
 
 
 
 
 
 
 
 
 
Fig.5 Time histories of water heights 
 

 
 
 
 
 
 
 
 
 
 
 
 
Fig.6 Impact pressure time histories at probe P1 
 
Table 2 The pressure peak and corresponding time 

 Pressure peak/Pa Corresponding time/s 

Exp. 11 239.4 0.4150 

VOF 12 036.4 0.4130 

UNI-fine 9 149.3 0.4398 

OPT 9 164.4 0.4400 

UNI-coarse 6 220.5 0.4396 
 

The evolution of the impact pressure at the loca- 
tion P1 (in the front of the obstacle) is illustrated in 
Fig.6, where the MPS results are again compared with 
the experiment results[18]. It is seen that the overall 
trend of the numerical results is in agreement with the 
experimental one. The pressure peak and the correspo- 

nding time are also listed in Table 2 and this peak 
occurs when the water front reaches the obstacle. One 
may specially note that the peaks of the Exp.[18] and 
the VOF[18] are the differences between the maximum 
and the initial value. From this table, the instant obtai- 
ned by simulations is close to that obtained by the 
experiment but the maximum value at the location P1 
is a bit underestimated. Here, the discrepancy of the 
impact instant is not significant among these simula- 
tions, and increasing the sample frequency may make 
the difference more significant. However, the maxi- 
mum value obtained by the OPT is greater than that 
obtained by the UNI-coarse, meanwhile close to that 
obtained by the UNI-fine. 
 

 
 
 
 
 
 
 
 
 
 
 
 
Fig.7 Comparison of required CPU time for flowing 4 s 
 

Figure 7 shows the comparison of the required 
CPU time for flowing 4 s by the conventional uniform 
MPS and the overlapping MPS. All these cases are 
carried out on a personal computer of Intel i7-3770. 
From Fig.7, the CPU time required by the OPT is 
about half of that required by the UNI-fine, while both 
the CPU times required by the OPT and the UNI-fine 
are much longer than that required by the UNI-coarse. 
One reason is maybe that the overlapping region is 
large and the maximum number of fluid particles in 
the OPT reaches five-eighths of that in the UNI-fine 
and over five times of that in the UNI-coarse. 
 
 
5. Conclusions 

An overlapping MPS method is applied for a 3-D 
dam breaking flow with an obstacle. Its main idea is to 
distribute the low-resolution particles in the whole 
computation domain and the high-resolution particles 
in the local domain of interest. During the simulation, 
the flow field is first solved by the low-resolution 
particles, and then the local flow field of interest is 
recalculated by the high-resolution particles. In view 
of the fact that the high-resolution particles are gene- 
rated or removed dynamically in the overlapping re- 
gion, an algorithm to generate fine particles is develo- 
ped. Then, a dam break flow with an obstacle is simu- 
lated by the uniform MPS and the overlapping MPS. 
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The qualitative comparison among experimental data 
and the results obtained by the VOF and the MPS 
shows that the shape of the free surface obtained by 
the overlapping MPS is more accurate than that obtai- 
ned by the UNI-coarse and close to that obtained by 
the UNI-fine in the overlapping domain. In addition, 
the water height and the impact pressure at P1 are also 
in an overall agreement with the experimental data. 
The pressure peak obtained by the OPT is close to that 
obtained by the UNI-fine, but greater than that obtai- 
ned by the UNI-coarse. Finally, the CPU time requi- 
red by the overlapping MPS is about half of that 
required by the UNI-fine, and this can be improved by 
optimizing the overlapping domain in the future work. 

The present work shows that the local flow field 
can be refined by the overlapping technique. Nonethe- 
less, there are still some problems, such as the mass 
conservation, to be resolved for a wide application of 
the OPT. These problems require a further study. 
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